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Abstract. We study how robot swarms can collectively adapt to dy-
namic environments by changing what they collectively select as the best
among a set of n possible options. While the robots rely on local commu-
nication with one another, follow simple rules, and make estimates of the
option’s qualities subject to measurement errors, the swarm as a whole
can infer the change in the environment to make accurate collective de-
cisions. Most studies focusing on dynamic environments have achieved
adaptive behaviour by including random noise or threshold-based ap-
proaches to continuously explore alternatives and prevent opinion stag-
nation once consensus is achieved. In this study, we investigate whether
or not swarms of robots with heterogeneous behaviours can be more
adaptive than homogeneous swarms. We consider two behaviours from
the literature which robots use to update their opinions: the majority
rule, where robots gather information from all neighbours, and the voter
rule, where robots use information from a single neighbour. In static en-
vironments, swarms of majority-rule robots, by using a larger amount
of social information, typically make quicker decisions than swarms of
voter-rule robots. However, our multiagent and robot simulations show
that including voter-rule robots within a swarm of majority-rule robots
can increase the group’s responsiveness to environmental changes. This
result shows the potential benefits of mixing simpler and relatively more
advanced robots in the same swarm.

1 Introduction

Collective decision-making is an essential capability to enable autonomy in swarm
robotics. Swarm robotics is inspired by the self-organising behaviours observed
in biological systems, particularly evident in eusocial insects [13]. Examples of
collective decision-making are honeybees’ choice of a site for their nest among
various alternatives [46], or ants’ selection of the shortest path from their nest
to a food source [17]. These examples found in nature and characterised by
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the absence of a global coordinator serve as the foundation for developing col-
lective decision-making algorithms in swarm robotics [39], especially in swarms
of minimalistic robots that execute simple behaviours to reach collective deci-
sions in diverse scenarios, such as the selection of an aggregation site [8,48],
the coordination of motion in a common direction [29], or the identification of
the most abundant environmental feature [58,6]. The use of minimalistic robots,
constrained by limited memory, computational power, and communication capa-
bilities, is often mandated by the application scenario. For instance, size is crucial
for nano-robots navigating blood vessels, whereas budget constraints may lead to
the use of inexpensive, disposable robots in hazardous environments [19], where
the risk of robot loss is high. As a result of their limitations, minimalist robots
often present a high level of sensory noise, which leads to uncertainty in envi-
ronmental and social estimations, and ultimately poses a significant challenge to
the process of making collective decisions.

An important category of collective decision-making is the “best-of-n prob-
lem” where a group needs to choose the best option among n alternatives that
can differ in quality [55]. Given the noisy assessment of the quality of the options
in minimalistic systems, undertaking best-of-n decisions can be challenging for
a robot swarm. This challenge is further amplified in dynamic environments,
where conditions change over time [34].

Making collective decisions in the best-of-n problem while requiring mini-
malism relies on voting algorithms governed by simple rules, typically studied
in opinion dynamics [5], where each opinion shared by the robots is treated as
a vote. Among the computationally simplest algorithms is the voter model (or
voter rule) [7,18], where robots consider only one vote (opinion) from a ran-
domly chosen neighbour. This model has been expanded into the weighted voter
model in [53], wherein robots express their votes for a duration proportional
to the quality of the communicated option, often resulting in the selection of
the best option due to modulation of positive feedback. Another well-known
approach to collective decision-making in robot swarms is the use of the local
majority rule [16,23,28,11], where each robot chooses the option with the most
votes from its neighbours. Compared to the voter rule, the local majority rule
has higher computational costs (as robots need to process and aggregate multi-
ple votes instead of randomly selecting one), allowing the robots to pool more
accurately neighbour’s opinions and, in turn, enabling quicker collective deci-
sions [54,40]. The concept of majority rule, where options favoured by over 50%
of neighbouring agents are selected, can be extended by employing various sub-
and super-majority quorums [26], such as the k-unanimity rule [44] or the q-
voter rule [27]. Besides selecting social information using methods like voter or
majority rules, a robot must integrate new social information with its personal
opinions. This integration can be done using the direct-switch rule to overwrite
the opinion with new social information [53] or by temporarily dropping any
personal opinion before adopting a new one, as in the cross-inhibition rule [37].

Besides a few exceptions, e.g., [31,34,49], most research efforts for solving the
best-f-n problem in robot swarms have primarily examined scenarios in static
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environments, where environmental conditions and option qualities remain con-
stant over time. Even more rare are studies on collective decision-making in
environments with n > 2, i.e., more than two options [14,51,25,3,10]. In real-
life applications (e.g. drug-delivering nanobots in human bodies or detection or
clearing of chemical spills), robot swarms may need to operate in dynamic en-
vironments with several alternatives that change quality over time. Hence, an
important aspect to consider in designing robot swarms is their adaptivity, i.e.,
the swarm’s capability to reconsider its opinion in response to environmental
changes, such as when the quality of an option diminishes, or when a new, more
desirable option appears [22]. Survival in an uncertain environment, even for
biological systems, requires the ability to infer and respond to changing envi-
ronmental conditions [9,12,43]. For adaptivity to occur in robot swarms, it is
imperative that the swarm does not become ‘locked-in’ on an outdated opinion.
One way to enable the system to keep reconsidering decisions is through the in-
troduction of noise, which can be either random noise [51], or noise introduced by
periodically resetting the robots’ personal opinions, in this way allowing the in-
tegration of new environmental evidence [31,49]. In general, relying too much on
social information can prevent the system from adapting to changes [35,34,42],
as indicated by previous work that highlighted the benefits of lower robot con-
nectivity to keep social exchanges low and enable group adaptivity [51,2]. Other
work avoided opinion stagnation by including in the swarm a group of robots that
never change opinion (called stubborn or zealot robots) [35,34]. These robots oc-
casionally influence the other robots to reconsider opinions that are not shared
by the majority; although this solution enables adaptivity, it requires the de-
signer to know in advance all the available options so that stubborn robots can
be allocated accordingly.

The majority of studies investigating collective decision-making have consid-
ered behavioural homogeneity, where all the robots in the swarm follow the same
rules for selecting and updating opinions, i.e., every robot runs the same algo-
rithm. While behavioural heterogeneity can enhance the functionality of both
robotic and natural swarms [30,24,57], models of swarms comprising robots with
different behaviours are more difficult to analyse as even minor behavioural
differences can trigger significant, often unpredictable changes in the collective
dynamics. For instance, even unintentional differences, such as differences in
actuation errors, can yield qualitatively different collective responses [36]. Al-
though the literature on this topic remains relatively sparse, prior research has
highlighted the huge potential of heterogeneity, showing performances surpassing
those of homogeneous swarms [20,21,1].

In this paper, we exploit behavioural heterogeneity to improve the adaptivity
of the robot swarm in dynamic environments. We focus on a best-of-5 problem in
a collective perception scenario used in several collective decision-making stud-
ies [56,14,58,3,47]. In this scenario, the environment floor is covered by coloured
tiles (see Fig. 1), where each colour represents an environmental attribute. The
environment is dynamic due to the periodic change of colour of the tiles. The
goal of the robot swarm is to collectively reach a consensus on the predominant
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floor colour (i.e., the most frequent tile colour) and to adapt the consensus when
the environment changes. Because the robots can only make local noisy esti-
mates of the environmental state, they rely on information exchanges between
nearby robots to make accurate decisions. The robot algorithms are based on
an extension of the agent-based model proposed in [42]. In Sec. 2, we present
our agent-based model and in Sec. 3 we describe how our model can be rele-
vant for and implemented in a swarm robotics application. In Sec. 4, through
abstract multiagent simulations and realistic physics-based robot simulations,
we show that heterogeneous swarms that comprise robots that use the majority
rule and robots that use the voter rule can improve the speed response to adapt
collectively to environmental changes, surpassing, under some conditions, the
performance of a homogeneous swarm. Sec. 5 concludes the paper by indicating
how the results of this study could be extended to characterise when either be-
havioural homogeneity or behavioural heterogeneity enables a better collective
adaptivity to environmental changes.

2 The Model

Our model extends the agent-based model proposed in [42]. In our model, a pop-
ulation of individuals live in an uncertain time-varying environment which can
be in one of n possible states. Each individual can access the n representations,
corresponding to the environmental states, and can communicate these using n
different types of messages to form an opinion about the state of the environ-
ment. In a simulation run, the environmental state changes every t time steps,
transitioning into one of the other n− 1 states chosen uniformly at random. In
between each environmental change, each agent undergoes an update τ times.
Individuals can make noisy observations of the environmental state, which con-
stitutes their personal information. We model the observation noise through a
single parameter, the error probability η ∈ [0, 1]. When an individual makes an
observation, with probability 1 − η the observation is correct corresponding to
the true environmental state and with probability η, the observation is incor-
rect corresponding to one of the wrong states (chosen uniformly at random). In
addition to personal information, individuals can also access their social infor-
mation which corresponds to the opinions of their neighbours. Two individuals
are neighbours when they are directly connected in the communication network.
Individuals combine social and personal information by weighting their personal
information by a factor ω and using a simple decision-making rule.

We consider two decision-making rules: the majority rule and the voter rule.
With the majority rule, the individual counts how many neighbours have their
opinion in favour of each of the n environmental states. The individual adds the
value ω to the count for the option corresponding to its personal information.
In other words, the count for option i is Mi + ωMδi, where M is the number of
neighbours, Mi is the number of neighbours with opinion i, and δi is one when
the individual’s personal information is equal to i and is zero otherwise. Finally,
the individual adopts the opinion with the highest count. If more than one state
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Fig. 1. (A-C) Snapshots of robotics simulations with 100 Kilobots in the tested col-
lective perception scenario. The floor (i.e., the Kilogrid table) is composed of coloured
tiles. The robots are tasked with selecting the predominant colour among five alterna-
tives. (A) At the beginning of the experiments, the floor has 40% of red tiles and the
remaining 60% are evenly split among blue, green, yellow, and black tiles. (B-C) The
environment has changed to a majority for blue and green tiles, respectively. (D) A strip
plot overlaid on a violin plot for 5,500 individual environmental observations when the
true value is 40% (yellow dot). The simulated robots observe the true environmental
state (i.e., the majority colour) on average 71% of the times, thus noise η = 0.29.

has the highest count, the individual adopts one of them chosen uniformly at
random. With the voter rule, the individual chooses the state to adopt as its
opinion with a probability proportional to the counts. This rule is equivalent to
adopting the personal information with probability ω̂ = ω/(1+ω), and adopting
the opinion of one randomly-chosen neighbour with probability 1− ω̂.

We form heterogeneous swarms comprising individuals employing one of the
two decision-making rules, either voter or majority, where a fraction k ∈ [0, 1] of
the agents use the voter rule and the rest (i.e., fraction 1− k) use the majority
rule. Thus, for values of k = 0 and k = 1, the swarm is homogeneous.

We consider asynchronous opinion updates, i.e., at each time step only one in-
dividual makes an environmental observation and updates its opinion following
either of the two rules. Once it updates its opinion, the individual communi-
cates it to all its neighbours. We consider two types of communication networks:
structured and random. In a structured communication network, individuals
live on a first-nearest-neighbour square lattice with periodic boundaries and von
Neumann connectivity. In a random communication network, each individual is
connected to four randomly chosen individuals to whom it transmits its signals.
The random network is also dynamic as the neighbours of each individual are
drawn randomly each t time steps.

3 Swarm Robotics Simulations

While abstract multiagent simulations offer quick computations of the system
dynamics, they may not fully encompass the complexities and real-world con-
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straints of robotic systems. Therefore, to provide a more comprehensive verifi-
cation of transferability, we test the collective behaviour through physics-based
simulations of a swarm of N = 100 autonomous robots.

Collective Perception Scenario We test the collective decision-making al-
gorithms in a collective perception scenario where the robots’ objective is to
collectively infer the environmental state, which comprises randomly distributed
floor tiles of five different colours: red, blue, green, yellow, and black, see Fig. 1.
This corresponds to an instance of the best-of-5 problem, where the correct en-
vironmental state corresponds to the colour that occurs most frequently in the
floor tiles. In line with the decision-making literature [38,45,50,15], when scaling
the problem to decisions between more than two options, there is one best option
(i.e., the predominant colour representing the correct environmental state) and
n− 1, in our case four, remaining options with the same lower quality (i.e., four
colours appear in the floor tiles in equal minority proportion).

The environment changes every t time steps, meaning that the tiles’ colours
change and, after every change, one of the colours that was in minority becomes
the predominant one. In the robot simulations, t corresponds to 10 minutes.
We run the experiments that last 3t = 30 minutes, therefore we can test the
ability of the robots to adapt to three environmental changes. At the start of
each simulation, all robots are initialised at random locations and committed to
the blue option while the environment is initialised in a red state (i.e., the red
tiles are the most numerous). In this way, we simulate that at the beginning of
the simulation, an environmental change has happened. Every 10 minutes, the
environment changes, at minute 10, the blue colour becomes predominant and
at minute 20, the green colour becomes predominant, as shown in Fig. 1.

Simulation Setup In this analysis, we use Kilobots [41]—small-sized, min-
imalistic, and cost-effective robots that can broadcast infrared (IR) messages
with 9-byte payload in a range of 10 cm, move at 1 cm/s, and have a control loop
of approximately 33 ms. Because the Kilobots have limited sensing capabilities,
we run our experiments putting the robots in a virtual environment, the Kilo-
grid [52], that allows them to make environmental readings otherwise impossible.
The Kilogrid is an electronic table measuring 1×2m2, consisting of 800 cells that
can display any RGB colour and interact with the Kilobots via IR messages. All
cells, except white border cells (Fig. 1), continuously transmit IR messages with
their ID and colour. We simulate the robot swarm using ARGoS [33], a state-
of-the-art swarm robotics simulator, which has dedicated plugins to simulate
accurately both the Kilobots [32] and the Kilogrid [2].

Robot Behaviour Kilobots perform a random walk (alternating 10 s straight
motion with 5 s rotation) to explore the environment and interact with other
robots. Since Kilobots lack proximity sensors, Kilogrid cells transmit a binary
‘wall flag’ (high or low) to indicate proximity to a wall. Border cells and their
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adjacent non-white cells send a high wall flag, while other internal cells send a
low wall flag. Upon receiving a high wall flag, a robot executes a simple obstacle
avoidance routine to avoid collisions with the wall.

The robots repeatedly observe the environment, with each observation lasting
about 800 robot control loops (rcl). Thus, a robot makes roughly τ = 22 observa-
tions between environmental changes (every 10 minutes). During an observation,
the robot counts the tiles (Kilogrid cells) of each colour it encounters. The robot
can only read the colour of the Kilogrid cell it is on. Through a random walk,
during each observation, the robot visits on average 8 tiles. After 800 rcl, the
robot sets as its environmental observation the most observed colour (the tile
counter is reset every observation cycle of 800 rcl). Because of the limited number
of cells visited by the robot, the environmental observation is subject to noise η,
i.e., the proportions of tile counts are often different than their true proportions.
The value of η varies depending on the true proportions. We test two different
proportions (η values) in the robot experiments. When the predominant colour
appears in 40% of the tiles and each of the other four colours in 15% of them (as
shown in Fig. 1A-C), the average observation error is η = 0.29 (Fig. 1D). When
the predominant colour appears in 30% of the tiles and each of the other four
colours in 17.5% of them, the average observation error is η = 0.47.

Throughout the experiment, the robots broadcast a message expressing their
opinion (i.e., the environmental state they believe to be true) every 2 s on average.
They also display their opinion to a human observer by lighting their LEDs in the
same colour. The majority-rule robots process all received messages, grouping
them by colour in a set r, whereas the voter-rule robots only store the colour
indicated in the last message they receive, overwriting the content at each new
message. After each environmental observation (every 800 rcl), the robot uses
either the majority or voter rule for decision-making and updates its opinion.
In the majority rule process, the robot counts messages received within r as m,
calculates ω×m, and adds it to the count of the most observed tile colour in r.
It then applies the majority rule on r to update its opinion. In the voter rule,
the robot uses personal observation with probability ω̂ to switch to the most
observed tile colour, or with probability 1− ω̂ uses social information to update
its opinion. This process repeats throughout the experiment.

4 Results

We measure the system performance Λ as the proportion of robots that infer the
correct environmental state on average throughout the experiment. To do so,
we compute this proportion for each time step and divide it by the experiment
length. We report results for different levels of personal observation noise η and
different personal information weights ω (which is used in the decision rule).

4.1 Multiagent Simulation Results

The results of stochastic multiagent simulations with 100 agents are presented
in Figs. 2 and 3. We ran one long simulation with 500 environmental switches
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Fig. 2. Multiagent simulation results for swarms of 100 agents interacting on random
time-varying communication network. (A-D) Time-averaged fraction of agents inferring
the correct environmental state (Λ on the y-axis) for different swarm compositions
(k on the x-axis), for various observation noise values η ∈ {0.1, 0.29, 0.47, 0.7} and
personal information weights ω ∈ {0, 0.4, 0.5, 1} (average of 11,000 time steps, with
environmental changes every τ = 22 time steps). The inset in panel A shows a snippet
of the simulation with time on the x-axis and the proportion of correct agents on the
y-axis. (E-H) The temporal evolution of some selected cases for a short segment of 250
time steps for ω = 0.4 and η = 0.7 (in E, F), and ω = 0.2 and η = 0.47 (in G, H).

(thus a total of 500t = 11, 000 time steps) per configuration. Since the simulation
process is ergodic, the results are akin to running multiple simulations.

Figures 2A-D shows results for four values of ω ∈ {0, 0.4, 0.5, 1} and four
personal observation noise η ∈ {0.1, 0.29, 0.47, 0.7}. Relying prevalently on social
or personal information (ω = 0 and ω = 1, respectively) leads in most cases to
poor results. For instance, when ω = 0 in Fig. 2A, the agents only use social
information, making the population blind to environmental changes and stuck in
an immutable consensus for one option (also represented by the inset). Instead,
for intermediate values of ω, the system is able to combine social and personal
information achieving higher performance Λ. On the horizontal axis of Fig. 2A-D,
we vary the swarm composition k indicating the proportion of voter-rule agents
(where the other agents, proportion 1− k, use the majority rule). While Fig. 2C
shows that a homogeneous swarm of majority-rule agents (k = 0) has the best
performance Λ, Fig. 2B also shows that there are conditions when heterogeneous
swarms (0 < k < 1) are superior to homogeneous ones. In particular, when
observation noise is high and the personal information is weighted less than the
social information (ω < 0.5), combining the two types of agents can be beneficial.

The temporal evolution of the fraction of informed individuals shown in
Figs. 2E-H helps to understand the dynamics of the system in different con-
figurations. With majority-rule agents only (homogeneous swarm, k = 0), the
swarm is rarely able to adapt to changes (see Figs. 2E and 2G), behaving in a
way comparable to an observation-blind swarm (shown in the inset of Fig. 2A).
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Fig. 3. Results from multiagent simulations with 100 agents on two network types:
top row (A-D) shows random time-varying communication, bottom row (E-H) shows
structured communication (lattice with von Neuman neighbourhood). The colour map
indicates performance Λ, the average fraction of agents inferring the correct environ-
mental state over time. The colour bar scale in each panel is different to better visualise
the region of maximal performance in each condition.

In these figures, there are few and high peaks. This means that with k = 0 and
low ω < 0.5, the agents prevalently rely on social information, obtaining in this
way very high levels of group agreement (high peaks), however at the expense
of poor adaptability to changes (few peaks). These few peaks mostly happen
when, by chance, the environment changes to the state that corresponds to the
opinion in which the swarm is locked in. This situation of opinion stagnation
can be improved by including in the swarm a proportion of voter-rule agents, as
shown in Figs. 2F and 2H for k = 0.4 and k = 0.65. Here, the system reliably
and rapidly adapts to change (periodic peaks at every environmental change),
however at the cost of a smaller agreement (lower peaks).

The colour maps of Fig. 3 show a more complete exploration of the parame-
ter space. The two rows show results for the two considered types of networks.
The top row shows results for agents interacting on a random time-varying com-
munication network, instead the bottom row shows results for swarms of agents
interacting on a static structured communication network. For both types of net-
works, the trend is similar, however when agents communicate on a structured
network, having a heterogeneous swarm can perform better than a homogeneous
swarm in a larger range of parameters.

4.2 Swarm Robotics Simulation Results

The swarm robotics results highlight the benefits of having a heterogeneous
swarm as combining the two types of robots (majority-rule and voter-rule robots)
leads to the best performance in a larger range of parameters. Figure 4 shows
the results for two observation noise levels (η = 0.475 as red points and η = 0.29
as blue points) and three ω values (different panels). In line with the multiagent
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Fig. 4. Swarm robotics simulation results for swarms of 100 Kilobots. Time-averaged
fraction of robots inferring the correct environmental state (Λ on the y-axis) for dif-
ferent swarm compositions (k on the x-axis), for various observation noise values (red
points for η = 0.475 and blue points for η = 0.29) and personal information weights
ω. The average is computed on 30 simulation runs per configuration of 30-minute ex-
periments with environmental changes every 10 minutes. Each panel’s insets show the
temporal evolution of the homogeneous swarm (with majority-rule robots only) and
the heterogeneous swarm (with the best performance Λ) for η = 0.29.

predictions of Sec. 4.1, the robot simulation results show that the benefits of
having a heterogeneous swarm are larger when ω is low and the estimation noise
is high. The insets in Fig. 4 show the temporal dynamics of some representative
cases, confirming that swarms only composed of majority-rule robots (k = 0)
are unable to rapidly adapt to changes (for high ω, adaptation is slow and for
low ω, there is no sign of adaptation). As discussed in the previous section, for
k = 0 and low ω, the occasional peaks in the temporal evolution are due to
the environment transitioning to the state that matches the opinion in which
the robots have been initialised. More precisely, this match happens after the
first environment change after 10 minutes of simulation, when the predominant
colour in the Kilogrid is blue (Fig. 1B). Instead, heterogeneous swarms seem to
cope with environmental changes better, to adapt quicker, and have a higher
performance Λ than homogeneous swarms in any of the tested conditions. We
also conducted a few preliminary real-robot experiments on a swarm of 40 robots,
for ω = 0.2 and η = 0.2, showing promising results with environmental inference
improving in heterogeneous swarms (videos in supplementary material [59]).

Surprisingly, the swarm robotics results more closely align with those of a
multiagent system on a fixed structured network, where the benefits of het-
erogeneity are clearer, rather than on a random time-varying network, where
heterogeneous systems are optimal in fewer conditions. In fact, the interactions
among robots should be better described by a network that changes over time
through random encounters. While we do not have a definitive explanation yet,
we believe that one of the causes could be the neighbourhood correlation (i.e.,
there are cliques where several neighbours of my neighbours are also my neigh-
bours), but further investigation is needed for confirmation.
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5 Discussion and Conclusion

In this paper, we have studied swarm robotics algorithms for the best-of-n prob-
lem in dynamic environments. The robots continuously attempt to infer the cor-
rect environmental state which changes over time. To alleviate the effect of po-
tentially large errors in making personal observations of the environment, robots
exchange information on what they believe to be the true environmental state:
thanks to these social exchanges, they make collective decisions that are more
accurate than what they could do if operating alone. Both our and prior analyses
suggest that heavy reliance on social information can lead to group opinion stag-
nation, hindering the swarm from acquiring new environmental information and
locking the collective into former beliefs [31,34,49,51,42]. We differentiate from
previous work that investigated adaptability to environmental changes in collec-
tive best-of-n decision-making of robot swarms by considering a behaviourally
heterogeneous swarm. In our study, some of the robots use the majority rule
while others use the voter rule (these are two simple voting rules frequently
studied in the opinion dynamics and swarm robotics literature [18,16,56,11,4]).

Even though the majority rule is more sophisticated and allows the robots to
quantify better the option of the rest of the group (using larger neighbourhood
sampling), the introduction of a proportion of robots using the simpler voter
rule, which is based on one random social sample, can lead to collective benefits.
Our analysis shows that there are indeed conditions where having a heteroge-
neous swarm composed of two groups of robots, one using the majority rule and
the other using the voter rule, can lead to a quicker response to environmental
changes. Relevant conditions where we find swarm heterogeneity useful are when
there are high levels of errors in personal environmental observations (high noise
parameter η) and when the robots have low confidence in their observations and
give more importance to social information rather than personal information
(low weight parameter ω). In addition, our analysis shows that heterogeneous
groups can also be quicker to respond to an environmental change (e.g., see in-
sets of Fig. 4). Future research may investigate whether the idea of having a mix
of simpler and more sophisticated robots could also be beneficial in other cases,
such as when robots are heterogeneous due to manufacturing differences (e.g.,
robots with different sensor noise levels) [36].

Our analysis based on multiagent and swarm robotics simulations shows the
potential benefits of heterogeneity, expanding the theoretical analysis conducted
in [42]. Further analysis should better characterise in which conditions homo-
geneity or heterogeneity are the best strategy. Our intuition is that information
noise and social network correlations may be critical factors. We believe a fruit-
ful research direction is considering heterogeneity for cost-efficiency, as shown in
our previous work [1], where combining simple and complex robot behaviours
can reduce the average cost of running the swarm algorithm.
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