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Abstract— Making fast and accurate consensus decisions
through local communication and decentralised control in a
swarm of simple robots can be a very challenging endeavour. In
swarms of robots with limited capabilities, consensus decisions
can be made using simple voting rules. In our study, the robots
use rules based on the cross-inhibition model, which describes
a voting mechanism observed in the house-hunting honeybee,
that has been shown to efficiently allow consensus achievement
in distributed robotic systems. The cross-inhibition mechanism
has been shown to lead to a highly stable consensus, preventing
the correction of possible group decision errors which can
happen, for example, due to high noise in robots’ estimations. In
this paper, we investigate the impact of miscommunication on
the speed-accuracy trade-off in consensus decision-making in
the context of a binary discrimination problem—i.e., choosing
collectively the best of two options. We evaluate the accuracy of
decision-making theoretically, using continuous and finite-size
models, and experimentally in a collective perception scenario,
using swarms of 100 simulated robots and 50 real Kilobots.
Our study suggests that a certain level of miscommunication (or
communication noise) among agents can increase the decision’s
accuracy and, thus, can serve an important functional role in
making collective decisions in robot swarms.

I. INTRODUCTION

In self-organised decentralised systems, a large number of
agents need to coordinate to perform tasks or solve problems
exclusively based on the local interactions among the agents
themselves and the interactions they have with the sur-
rounding environment [1]. Decentralised decision-making,
which plays a crucial role in natural systems [2], particularly
among social animals [3], [4], [5], holds equal importance
for autonomous systems [6]. Collective decision-making al-
gorithms inspired by natural systems have been implemented
in synthetic autonomous systems, such as robot swarms, to
make consensus decisions in various situations, such as when
selecting an aggregation site [7], [8], a common direction
of motion [9] or the dominant environmental feature [10],
[11]. Frequently, the application scenario imposes restrictions
on the type of robot that can be employed in terms of its
computational, communication, and memory capabilities. For
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instance, size is the main constraint for a swarm of (nano)-
robots navigating in blood vessels. Likewise, the available
budget is the main constraint for robot swarms operating
in hazardous environments, because during each operation,
numerous robots could suffer damage and become unusable,
and it is therefore important to use cheap, disposable single-
use robots. Such constraints require solutions based on
minimal algorithms that can run on minimalistic robots.

An important category of collective decision-making prob-
lems is the “best-of-n problem” where a group needs to
choose the best option among n alternatives that can differ in
quality [12]. Assuming that no individual member of a swarm
has the capability to make an accurate assessment of the
quality of the options, undertaking best-of-n decisions can be
challenging for a robot swarm. Several studies have utilised
cross-inhibition as a decision-making algorithm for minimal-
istic robot swarms, which combine environmental and social
information to solve the best-of-n problem [13], [14], [13].
The crucial aspect of this algorithm is inhibitory signalling,
a fundamental mechanism widespread in natural systems,
where individuals become uncommitted from any option
when they encounter another individual with an opinion
about what is the best option conflicting with their own. This
inhibitory mechanism is present in many different systems,
including cellular metabolism [15], neuron activity [16], hon-
eybee house-hunting [3], and human societies [17]. Previous
studies have found cross-inhibition not only to be crucial for
biological systems seeking to achieve coordinated actions,
but also to be important in artificial systems due to its ability
to prevent decision deadlocks. For instance, [18] and [14]
showed cross-inhibition’s superiority over the direct-switch
model in resolving decision deadlocks in the presence of
asocial behaviour, even between options of equal or similar
quality. However, this ability to break decision deadlocks
comes at a cost. In situations where options have different
qualities, the goal is to not only reach a consensus but also
to agree on the best option. Yet, when options’ qualities
are similar, cross-inhibition can often lead to a consensus in
favour of the inferior option due to initial random fluctuations
caused by erroneous individual estimates. This is because,
thanks to the inhibitory mechanism, the dynamics of the
group opinion are highly stable [18]. Therefore, once a
large majority of agents reach a consensus for an option,
the collective agreement is maintained and is difficult to
be overturned, even if it happens to be a consensus for the
inferior choice. As a result, cross-inhibition trades accuracy
for system stability when options are of similar qualities.

Accuracy is an important and widely used metric for



assessing collective decision-making mechanisms [19], [20],
[10], [13]. Measuring the performance of a swarm of au-
tonomous robots exclusively based on accuracy, i.e., their
ability to choose the highest quality option, can be useful
in mission-critical applications, especially in hazardous or
dangerous situations where choosing a lower quality option
can have detrimental consequences. In natural systems, the
presence of noise and errors can diminish the accuracy
of various biological processes, such as system regulation,
environmental adaptation, information communication, and
signal detection, which disrupts the potential performance
of these systems. However, studies have also shown that
a moderate amount of noise, e.g., in the form of infor-
mation error, can contribute to an improvement in the
foraging success of honeybees [21]. Similarly, ants exploit
noise in decision-making for efficient exploitation of food
sources [22]. Humans can also benefit from noise, e.g.
caused by anti-conformist behaviour, to collectively rescue a
population from states of unproductive conformity [23]. The
inevitability of noise in real-world scenarios makes it essen-
tial to acknowledge that artificial systems like robot swarms
are subject to such disturbances during their operations. It
is, therefore, important to study how to design collective
robotics systems that, similar to their biological counterpart,
can exploit errors and disturbances to enhance their collective
performances rather than suffer from them. The property of
benefiting from disturbances is also called antifragility [24].

As a first step in this direction, in this study, we analyse
the influence of noise on the accuracy of the cross-inhibition
algorithm in making best-of-2 decisions. We study the algo-
rithm in the same collective perception scenario explored
in [14] and [25], whereby a robot swarm is tasked with
making a consensus decision between two environmental
features (presented in Sec. II). We introduce noise in the
system through miscommunication among the robots. We
analyse the dynamics of the system with ordinary differential
equations (ODEs) in the limits of infinitely-large swarms,
and with master equations based on a chemical reaction
network for finite-size swarms (described in Sec. III). The
Gillespie algorithm [26] is used to numerically simulate this
network. Our results, presented in Sec. IV, surprisingly reveal
that noise can improve the accuracy of a robot swarm by
reducing the probability of selecting the inferior option, at
the expense of an increase in decision time. Using ODEs,
we find the minimum amount of noise required to shift
the consensus from the inferior option to the higher quality
option to improve the accuracy. We confirm our theoretical
predictions through a set of robot simulations and real robot
demonstrations. In Sec. V, we discuss and conclude the study.

II. THE DECISION-MAKING ALGORITHM

In our analysis, we adapt the algorithm proposed in
Zakir et al. [14], which is based on the one of Valentini
et al. [19], [27], by including a mechanism to regulate
and systematically study the communication noise between
robots. We focus on the best-of-2 decision problem where a
swarm of S robots must converge to the best option between

Fig. 1. (A) The finite state machine describing the robots’ behaviour
consists of the exploration and dissemination states, followed by a polling
phase, during which committed robots receiving a message from robots
committed to a different option, reset their commitment (they get inhibited).
(B) A snapshot of an experiment showing 100 simulated Kilobots (small
grey circles) in the ARGoS Kilogrid arena comprising red and blue tiles.

A and B. Both options are associated with a quality value,
qa and qb, respectively, and the ratio of the two qualities is
represented by q=qb/qa. In our study, we assume, without
loss of generality, that qa ≥ qb > 0, and therefore q ∈ (0,1].

The robots run an algorithm based on the finite state
machine shown in Fig. 1A, that has minimal requirements
in terms of computation, communication, and memory ca-
pabilities of the robot. Each robot is capable to store and
communicate information about one option only, which rep-
resents its opinion. The algorithm consists of two alternating
states: exploration and dissemination. The robots can be in
one of five possible states: AD (disseminating for opinion A),
BD (disseminating for opinion B), AE (exploring for opinion
A), BE (exploring for opinion B) and U (uncommitted from
any option). At the end of the dissemination state, the robot
undergoes a polling phase to update its commitment to
an option based on social information it receives from its
neighbours, and then switches to the exploration state. In
case the robot receives an opinion different from its own
during the polling phase, it becomes uncommitted (state U).

Robots in the exploration state (AE or BE ) evaluate the
quality of their current opinion (i.e., option A or B) from
the environment. The duration of time a robot stays in the
exploration state is determined by a random draw from an ex-
ponential distribution with rate λe = t−1

e , which corresponds
to the time distribution of a Bernoulli event with probability
t−1
e to happen. Therefore, robots leave the exploration state

after a mean time te and transition to the dissemination state.
Robots in the dissemination state (AD or BD) share their

opinions (i.e., option A or B) locally with their neighbouring
robots. The duration of time a robot disseminates its opinion
is determined by a random draw from an exponential dis-
tribution with rate λd = qitd ; in this way, the average time



spent in the dissemination state is linearly proportional to the
estimated option’s quality qi (with i= {a,b}). Correlating the
dissemination duration with option quality induces modula-
tion of positive feedback: the robots that are committed to
the best option are more likely to disseminate their opinion
for longer times. As a result, a robot is more likely to
receive messages from neighbours committed to the higher
quality option than from neighbours committed to the inferior
option.

Uncommitted robots stay in the uncommitted state U for
an average time tu, during which they do not estimate or
disseminate any option.

After the dissemination or uncommitted state, the robots
enter the polling phase, which requires them to collect the
opinion of one randomly selected neighbour and update their
own opinion using the cross-inhibition mechanism. With
cross-inhibition (Fig. 1A), when a committed robot (either
AD or BD) reads a message from a randomly selected robot
that is committed to a different option (e.g., a robot commit-
ted to option A reads a message from a robot committed to
option B), it gets inhibited and becomes uncommitted (U).
If an uncommitted robot receives an opinion (either A or
B) from one of its disseminating neighbours (AD or BD), it
will become committed to the corresponding option. After
polling, the robot returns to the exploration state to resume
the cycle as AE , BE , or U depending on the polling outcome.

In our system, we model noise in the form of information
miscommunication, i.e., the robots committed to an option
have a probability η to flip the opinion they disseminate
to the neighbouring robots. That is, a robot with opinion
A (resp. B) in the dissemination state AD (resp. BD) will
occasionally disseminate a message for the opposing option
B (resp. A) with probability η .

III. EXPERIMENTAL METHODS

With our algorithm defined, we aim to understand the
influence of miscommunication (communication noise η) on
the system’s accuracy across various q by using tools of
nonlinear dynamics and large-scale robotics experiments. In
this section, we define the models and the experimental setup,
and in the following section, we report the analysis results.

A. The ODEs

Let ad ,ae,bd ,be, and u be the proportion of robots in
the states AD,AE ,BD,BE , and U , respectively. We study the
behaviour of the model when the number of agents tends to
infinity (S → ∞), using the following system of ODEs:

dad
dt =− ad

qatd
+

ae

te
dbd
dt =− bd

qbtd
+

be

te
dae
dt =

(ad −adη +bdη)

(ad +bd)

(
ad

qatd
+

u
tu

)
− ae

te
dbe
dt =

(bd +adη −bdη)

(ad +bd)

(
bd

qbtd
+

u
tu

)
− be

te
where u = 1 - ad - ae - bd - be.

The proportions of robots ad and bd (respectively dis-
seminating options A and B) increase when robots complete
the exploration of the respective option, thus after an av-
erage time te they leave states ae and be, respectively. The
proportions ad and bd diminish when robots complete the
dissemination to start exploration, which happens at a rate
inversely proportional to the estimated quality, i.e., 1/(qatd)
and 1/(qbtd), respectively.

The proportions of exploring robots increase when com-
mitted robots terminate dissemination (at the rates indicated
before) or uncommitted robots have spent an average time tu
in the uncommitted state (i.e., at rate 1/tu). Whether the robot
starts the exploration of option A or B (increasing proportion
ae or be) depends on the message it reads in the polling phase
(happening at the end of dissemination). Note that while
uncommitted robots always move to exploration (either for
A or B when they read an A or B message, respectively),
the committed robots only begin exploration when they read
a message supporting their option, otherwise they become
uncommitted. The proportions of exploring robots ae or be
decrease at rate 1/te, i.e., after an average time te.

B. Chemical reaction network

Although distributed systems typically consist of numer-
ous agents, the finite size of these systems (S < ∞) can
exert a significant influence on their dynamics [28], [29]. To
understand the finite-size effects on our model, we use the
formalism of chemical reaction networks and numerically
approximate the solution of the master equations using
Gillespie’s stochastic simulation algorithm [26]:

AD +BD

1−η

qatd−−→ AD +U BD +AD

1−η

qbtd−−→ BD +U

AD +AD

1−η

qatd−−→ AD +AE BD +BD

1−η

qbtd−−→ BD +BE

AD +U
1−η

tu−−→ AD +AE BD +U
1−η

tu−−→ BD +BE

AE

1
te−→ AD BE

1
te−→ BD

BD +AD

η

qatd−−→ BD +AE AD +BD

η

qbtd−−→ AD +BE

AD +AD

η

qatd−−→ AD +U BD +BD

η

qbtd−−→ BD +U

AD +U
η

tu−→ AD +BE BD +U
η

tu−→ BD +AE

To study the system at convergence in the Gillespie simula-
tions, the initial agent distribution of the simulations is set to
td /(te+td) agents in the dissemination state, divided equally
between AD and BD, and the remaining agents equally
allotted between AE and BE .

C. Simulated robot experiments

Large-scale robotic experiments serve as a crucial means
to validate self-organised decision-making strategies. While
stochastic Gillespie simulations allow quick computation of
the dynamics of a discrete number of interacting agents,
they may not fully capture the intricacies and real-world
constraints of a robotic system. Hence, to provide a more
convincing verification of transferability, we implemented



our decision-making algorithm on a physics-based simulator
called ARGoS [30], and also ran real-robot demos. All the
code used for this study, including the mathematical models
and the algorithms run by the robots, are open-source and
available as supplementary material [31].

Scenario: We test the decision-making algorithm in a
collective perception scenario where the robots are tasked
with selecting the most frequent element in the environment,
in our case, the most frequent colour of the floor which is
composed of randomly distributed red and blue tiles (see
Fig.1B). Therefore, the colours are the two options—A is
red, B is blue—and the abundance of each colour represents
its quality.

Simulation setup: We use a swarm of 100 low-cost and
small-sized simple robots called Kilobots [32]; they commu-
nicate with each other in a range of 10 cm through infrared
(IR), and their control loop operates at an approximate
interval of 32 ms. We employ the Kilogrid system [33], an in-
teractive and customisable environment specifically designed
for the Kilobots. The Kilogrid consists of 800 square cells
covering an area of 2×1 m2; all the cells, except for those
at the borders (shown in white in Fig. 1B), are programmed
to continuously transmit IR messages containing their ID
and colour. Using the IR messages from the Kilogrid cells,
the Kilobots collect information from the environment, to
estimate their opinion’s quality (i.e. the proportion of cells
of a given colour). Both the Kilobots and the Kilogrid can be
simulated in ARGoS through dedicated plugins [30], [34].

Initialisation: At the beginning of each simulation run, we
initialise the robots in the exploration state with a random
initial opinion, with half of the swarm committed to option
A (in state AE ), and the other half committed to option B (in
state BE ). We deploy the robots on the Kilogrid at uniformly
random initial positions. The distribution of Kilogrid tiles
is randomly regenerated for each run. Each run lasts T =
200000 simulation timesteps, equivalent to 110 minutes.

Robot behaviour: To explore different areas of the en-
vironment and interact with different robots, the Kilobots
perform a random walk in the environment. As the Kilobots
do not have any proximity sensors, the Kilogrid cells also
transmit a binary ‘wall flag’ (either high or low) to indicate
proximity to a wall. The white cells at the borders and the
non-white cells adjacent to them send a high wall flag, while
all the other internal cells send a low wall flag. Whenever a
robot receives a high wall flag from the Kilogrid, it executes a
simple obstacle avoidance routine, irrespective of its current
state, to avoid a collision with the wall.

A robot in the exploration state only estimates the quality
of the option to which it is committed; to do so it reads
Kilogrid messages to keep track of the number T of cells
encountered and the count Ci of cells that match its current
opinion i. The robot ensures that each cell is counted only
once by using the cell’s ID. At the end of the exploration
cycle, which lasts on average λ−1

e = te = 2800 control cycles
(approximately 93 seconds), the robot estimates the quality
of its opinion: qi =Ci/T . The values T and Ci represent the
counts obtained during a single exploration cycle and are

Fig. 2. Strip plots overlaid on violin plots illustrating 6000 individual
quality estimates made by simulated robots for option A (red) and B (blue)
for three distinct q values. The yellow dots on the plot represent the actual
proportion of red and blue tiles in the Kilogrid environment.

reset before entering the dissemination state. These quality
estimates, made by the robots, are subject to noise, as
depicted in Fig. 2, which shows that the estimation noise,
caused by a limited number of cell readings, frequently leads
the robots to perceive a quality value that is higher or lower
than the true value.

Based on the estimated value of qi, the robot calculates
its dissemination time using an exponential distribution with
λ
−1
d = qitd ; in our setup, td = 1800 control cycles (approxi-

mately 60 seconds). The robots influence each other by com-
municating for a period of time whose length is proportional
to the estimates qi. Despite this modulation of positive feed-
back relying on inaccurate estimations (Fig. 2), the robots
can effectively reach a consensus for the best option (results
shown in Sec. IV). Disseminating robots broadcast in a local
range (10 cm) IR messages indicating their opinion (these
messages represent the robot’s votes for either option). When
a robot receives a message, it stores its content (i.e., a vote
for option A or B). Because robots have minimal memory,
they only store the last received vote by overwriting previous
messages. Once dissemination is terminated, the robot starts
the polling phase: it reads the last message that it received
from its neighbours and uses it to update its opinion. After
the polling phase, the robot returns to the exploration state
to make a new estimate of the option’s quality. Uncommitted
robots move randomly in the environment for an average of
tu = 800 control cycles (approximately 26 seconds) without
making any quality estimate or sending any message. Then,
they move to the polling phase.

The average durations of exploration, dissemination, and
uncommitment (te, td and tu) have been chosen considering
the motion speed of the robots. As Kilobots move forward
at 1 cm/s, rotate at 45 ◦/s, and communicate in a range of
10 cm, we have chosen time lengths that allow the robots
to obtain meaningful estimates, and to encounter a diversity
of neighbours while disseminating their opinion (in this way,
also approximating a well-mixed system).

IV. THE ANALYSIS

A. Predictions from the mathematical models

We analyse the mathematical models to study the influ-
ence of the communication noise η on the decision-making
algorithm by identifying when a population can reach an
agreement or remains polarised between the two options. To
do so, we study the long-term state of the system (t → ∞) by
computing the equilibria of the ODE system and recording



Fig. 3. (A-C) Long-term distribution (t → ∞) of robots supporting option A or option B (y-axis) for communication noise η ∈ [0,1] (x-axis) and option
quality ratio q ∈ {0.9,0.85,0.66}. The 2D histograms are computed via the Gillespie simulations by subtracting the proportion b of robots supporting option
B from the proportion a of supporters for A (y-axis). The overlying lines show the fixed points of the ODE system (green lines are unstable, blue lines are
stable). (D) The blue line shows the bifurcation point, i.e., the value of η for which the lower branches shown in panels A-C disappear, for qa = 1 and
qb ∈ [0,1]. The bifurcation marks a phase transition from bistability (possible collective mistakes) to monostability (accurate collective decisions) happening
at moderate levels of communication noise η . However, as shown in (A-C), too much noise can hamper consensus.

the final state of the Gillespie simulations with N = 100
agents. The values of td and te in both the ODEs and in
the Gillespie simulations are fixed to the same value as
in the robot simulations (see Sec. III C). We carry out 104

Gillespie runs for various η across four different q values.
We record the proportion of agents a = ad + ae and b =
bd +be (supporting options A and B, respectively) at the final
step (T = 200000) of each run to compute a− b averaged
across all the runs, and report the results as 2D histograms in
Figs. 3A-C (colour maps). On top of the histograms, we show
the bifurcation diagram computed from the ODE system. The
agreement between ODEs and Gillespie simulations is good.

Regardless of the quality difference q, we notice the bista-
bility of the system at η = 0, which represents the situation
where the swarm makes a consensus decision for either
option, compromising group accuracy. Counterintuitively, as
we increase the communication noise η , the lower branch in
favour of the inferior option disappears, therefore predicting
an increase in collective accuracy. We also notice that the
minimum amount of miscommunication η to transition from
bistability to monostability, and make the lower branch dis-
appear, increases with the difficulty of the decision problem
(i.e., higher quality ratios q). The critical value of η at which
the transition from bistability to monostability occurs is a
bifurcation point that can be represented as a function of q
(considering for simplicity qa = 1). While we could compute
the symbolic equation of the bifurcation point (provided in
the supplementary material [31]), its complexity makes it
impractical for analysis; therefore, we resort to numerical
computation to compute the stability diagram of Fig. 3D.

Figs. 3A-C also show that the consensus decision for the
best option is only sustained for a limited range of values
of η after the bifurcation point. As the value of η increases,
the system ultimately has a single stable equilibrium with a
population split 50-50 between the two options, indicating
a state of indecision where neither population reaches a
majority. For harder decision problems (options with similar
qualities, i.e., higher values of q), the system enters the
indecisive state at lower levels of communication noise
than for simpler problems. Therefore, the window between
bifurcation point and onset of indecision expands for simpler

Fig. 4. Results from Gillespie (A) and robot (B) simulations with a
swarm of S = 100 robots show the relationship between noise η (x-axis)
and speed/accuracy (y-axis) for five quality ratios q.

decision problems (low q).

B. Speed vs accuracy

We employ both Gillespie and robot simulations to analyse
the relationship between decision accuracy and decision time.
We compute accuracy by calculating the proportion of runs,
under a given configuration of q and η , that successfully
reached the quorum Q = 0.7 for the best option, out of
the entire set of executed runs. A swarm is considered to
have reached Q for option A when 70% of the robots are
committed to A (ad +ae ≥ 0.7). We compute decision time
as the average number of timesteps taken to reach the quorum
Q for the best option A. When, within the designated time
limit T , the best option is selected in fewer than 10% of the
runs, we omit the time results (insufficiently reliable data).

Fig. 4 shows the speed vs accuracy analysis of 250 Gille-
spie runs (in panel A) and 50 simulated robot runs (in
panel B) for five values of q and η ∈[0,1]. In general, we
can observe a qualitative agreement between the Gillespie
and robot simulations. For all the tested values of q, the
accuracy increases with increasing miscommunication η ,
up to a certain value after which performances drop. The
improvement in accuracy is more accentuated for difficult
problems (high q) than for easier problems (low q) where the
collective accuracy remains equally high for a large range
of values of η . For instance, in both robot and Gillespie
simulations, for q= 0.66 the collective accuracy is maximum
across all η , and similarly, the improvement in accuracy
is minimal for q = 0.75. Instead, in situations with high q



Fig. 5. The accuracy plots, obtained from Gillespie simulations, depict the
relationship between noise η (x-axis) and accuracy (y-axis) for different
swarm sizes (S) across six distinct quality ratios (q).

values (q ≥ 0.85), a comparison of accuracy at η = 0 and
η = 0.2 reveals a notable increase in accuracy, ranging from
5% to 12% improvement. On the other hand, this increase in
accuracy comes at the expense of an increase in decision time
(see dotted lines in Fig. 4). Therefore, the communication
noise η acts as the control parameter to regulate a speed-
accuracy trade-off.

C. Our interpretation of the phenomena

Communication noise acts as a perturbation on the col-
lective system, which gets ‘shaken’ and oscillates more
around the attraction point. Because the basin of attraction
of the equilibrium representing a consensus for the inferior
option is smaller than the equilibrium for the correct decision
(see Figs. 3A-C), a perturbed system can move from the
former to the latter and not vice-versa. Without noise, once
the swarm reaches a full (100%) consensus, no robot ever
changes its opinion. Moderate levels of system oscillations
let the system escape the suboptimal equilibrium, improving
accuracy. When perturbations increase, the system goes to
an indecision state, as the oscillations are too big to let the
system keep any large majority. Other works have looked
at other methods to perturb systems composed of robots
running algorithms similar to ours, e.g., by including a
minority of stubborn robots [35], [18] or letting robots
randomly sample the environment [14], [36], [37], showing
that these methods are useful to adapt to environmental
change, e.g., when the qualities of the two options swap.

D. Scalability

We further extend the analysis and use Gillespie sim-
ulations to study how accuracy changes when the swarm
size increases. In Fig. 5, we plot the decision accuracy for
different swarm sizes (from S = 50 to S = 1000 robots) as
a function of η ∈ [0,1] for various quality ratios q. Fig. 5
shows that as the system size increases, the probability of
choosing the inferior quality option diminishes across all q.
When S is small (e.g., S = 50), the accuracy has a linear
increase till the transition point, showcasing an improvement
in accuracy. However, as the swarm size increases, the
accuracy plateaus at its maximum value and transforms
into a step function, suggesting that larger swarm sizes

allow the system to achieve and maintain optimal accuracy
consistently. For instance, for S = 1000 and easy decision
problems (q ≤ 0.85), the accuracy remains maximal till the
transition point, after which it drops to 0 as the quorum Q
is never attained. Nevertheless, even for large S, in difficult
decision problems (q > 0.85) the accuracy is not maximal
at η = 0, leading to an improvement in accuracy, albeit
small, as miscommunication increases. Higher accuracy for
larger S is due to the effect of the stochastic fluctuations:
as the system size S is larger, the stochastic fluctuations are
smaller [38]. When the initial starting conditions of robots
committed to options A and B are symmetric, swarms with
smaller sizes have larger random fluctuations and, therefore,
are more likely to fall in the basin of attraction of the fixed
point for consensus for the inferior option (lower branch
in Fig. 3). While Gillespie simulations allow us to study
the effects of size-dependent random fluctuations (showing
increased performance with increasing S), the deployment
of a robotic system should also consider the effect of
physical interactions and interference among the robots. In
fact, physical interference in large swarms can congest the
system and limit robot mobility, leading to a decrease, rather
than an increase, of the group performance [29], [39]. Fig. 5
also shows that, thanks to cross-inhibition, the swarm is
consistently capable of breaking the symmetry and selecting
any of the two options when they have the same quality
(q = 1), in accordance with the existing literature [14], [18],
[40], [41].

E. Real robot demonstrations

To validate our analysis, we ran a set of real-robot
demonstrations with a swarm of 50 Kilobots on a square
1 × 1m2 Kilogrid arena (Fig. 6A), using the same setup
described in Sec. III.C. Each demonstration started with the
swarm opinion equally split between the two options, i.e.,
25 robots committed to red and 25 committed to blue.
The demonstration is terminated when the quorum Q = 0.7
for either option is maintained for one minute or after 30
minutes. To track the robots’ commitment over time, each
Kilobot sends every 2 seconds a message with its state to the
Kilogrid which logs all data. The robots also showed their
opinion to us via their coloured LEDs (option A as red, option
B as blue, and no opinion as green). All the demonstration
videos are available as supplementary material [31]. We ran
a total of five demonstrations with q = 0.85 and η = 0.15. In
all runs, the swarm successfully selected the higher quality
option A (Fig. 6B). By implementing the algorithm on a
swarm of physical robots, we confirm the possibility of
using the proposed algorithm for robotics systems even when
communication noise is high (in our demos, 15% of the
exchanged messages convey the wrong information).

V. DISCUSSION AND CONCLUSION

Information noise, which masks and alters the original
information content, is intrinsic to any collective process
of group-living organisms that exchange information for
coordination, from humans to animals to cells. Indeed, the



Fig. 6. (A) Robot demonstration with 50 Kilobots for q = 0.85 and η =
0.15. (B) All five robot demos led to a consensus for the best option (red).
The videos are provided as supplementary material [31].

impact of noise is the subject of numerous studies in opinion
dynamics [42], [43], [44], [45], social sciences [23], [46],
behavioural ecology [47], [48], [49], and cognitive neuro-
science [50], [16]. Noise is intrinsic in robotics too and
we are seeing a growing number of swarm robotics studies
taking noise as the central component of their analysis [51],
[52], [53]. In this study, we consider a type of communi-
cation noise where robots send a message with incorrect
information with a given probability. We quantify the effect
of such noise on the accuracy and speed of collective best-
of-2 decisions. Our analysis reveals that group accuracy in
selecting the best option is higher when the robots make
a modest number of communication errors than when they
do not make any errors (Fig. 4). However, as expected, too
much miscommunication hampers group agreement. There-
fore, this study shows that communication noise, as a form
of social noise between the individuals of a population, can
help the group in selecting the best available alternative.

In order to make a collective decision, our robots ran
a weighted voting algorithm based on the cross-inhibition
model [54], [18]. Despite the decision-making algorithm
being based on minimal robot requirements (limited compu-
tation, memory, communication), and the individual robots
making highly erroneous estimates of the option’s qualities
(Fig. 2), the swarm could, most of the times, collectively se-
lect the best option. Having such simple algorithms operating
on minimalistic devices can be useful for application scenar-
ios where the robots are extremely small (e.g., nano-robots)
or extremely cheap (e.g., disposable robots). In addition to
inaccurate cheap sensors, the cause of highly noisy measure-
ments can also be faulty components or malicious intrusions.
Indeed, the robustness to individual estimation errors and
the ability to collectively filter such noise are among the
main factors that led to the first implementation of these
types of bio-inspired voting algorithms for controlling robot
swarms [55], [56]. The inspiration comes from house-hunting
social insects, such as honeybees or ants, which also face
the same challenge of noise-prone individual estimates [57].
These biological systems equally face the problem of noisy
signalling and communication errors [58]. Interestingly, our
results show that moderate levels of communication error
can be beneficial, rather than detrimental, to the collective
performance. Our study also shows that this performance
improvement (higher accuracy) comes at the cost of slower
decisions (Fig. 4). Such speed-accuracy trade-off, commonly
found in decision-making [19], [20], is, in our case, regulated

by the noise level η .
Our previous studies have shown that the cross-inhibition

algorithm is an effective method for making value-based
decisions [18] and quickly reaching a consensus (quicker
than other similar methods [59]) even when options have
similar qualities [13], asocial minorities hindering group
consensus are present [18], [59], or individuals deviate from
social norms [14]. This paper shows that its performance
can increase through moderate levels of miscommunication.
Future work may investigate whether our results scale to
larger dimensions of the decision problem (best-of-n with
n > 2) [40], [52].
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